The first post in the watershed series mentioned that Morus alba (white mulberry) is a common invasive understory tree found at the edges of lawns along the Washington Channel, particularly along the unmown verge beside the fences that ring East Potomac Park’s recreation facilities. Given a chance, these shrubs will grow into a smallish tree of up to 15 meters, with a peculiar combination of lobed leaves on young shoots and heart-shaped leaves on older shoots. Its copious blackberry-looking fruits , which can disperse an estimated 20 million seeds per tree, make a convenient food source for birds and maybe humans — or else they leave a sticky purple mess on the walkways below.
But wait, mulberry? Isn’t that what silk is made from? How did that end up here?

What is this weed, and what does it have to do with the Opium Wars, Jefferson family wedding gowns, and deforestation in Ontario?
Silk production, or sericulture, was invented in China at least 4,000 years ago; legend says it was discovered by a princess who was strolling through the woods with a cup of hot tea. Young mulberry leaves are fed to silkworms, which spin silk threads around their cocoon as they metamorphose into moths. The cocoons are collected, boiled, and the threads are spun into fiber. China still accounts for most of the almost one million hectares (2.5 million acres) of mulberry under cultivation worldwide, according to the FAO, largely for silk but also for forage, wood, and even biofuel.
Yet sericulture (silk cultivation) requires that both mulberries and silkworms thrive in tandem. Mulberries obviously have adapted well enough to the local climate; thousands of years of domestication has selected for robust and easily grown varieties. The silkworms are a different story: they’ve been raised indoors for thousands of years, and thus have evolved into a very narrow ecosystem — they don’t even survive in the wild anymore, and require an exacting temperature range of 73-84° F, with high humidities, in order to thrive.
Silk was long one of the world’s most coveted agricultural products, and for centuries the world went to astonishing lengths to procure it from China.* Starting all the way back in Jamestown, Virginians attempted to get a cut of this lucrative trade by manufacturing silk: it seemed an ideal fit for the area’s warm climate and then-remote location, and potentially valuable both for the colonists and for British weavers. Yet while Virginia hews a bit closer to such temperatures than England, it isn’t exactly a room-temperature silkworm paradise. So while the robust mulberry thrived, fragile silkworms brought to Virginia didn’t, and instead Virginians profited off the native tobacco plant.

Thomas Jefferson’s family attempted silk cultivation at Monticello, and the results are telling. Above is “Mulberry Row,” the remnant of a lane lined with mulberry trees and, once upon a time, several buildings where slaves and other laborers did much of the work of the plantation. Obviously, the mulberry trees have done okay over the years — outlasting the buildings, for instance. The silkworms, though? Not so much. In 1811, Jefferson jokingly wrote to his granddaughter Cornelia,
your family of silk worms is reduced to a single individual that is now spinning his broach. to encourage Virginia and Mary to take care of it, I tell them that as soon as they can get wedding gowns from this spinner they shall be married. I propose the same to you that, in order to hasten it’s work, you may hasten home; for we all wish much to see you.
For what it’s worth, neither Mary nor Cornelia ever married, although I doubt her silkworm colony’s failure to generate enough silk for a wedding gown had much to do with that.
Silk was so valuable that Americans couldn’t be dissuaded by the industry’s failure in Virginia. Silkworms, as mentioned above, are fickle and highly adapted to the methods of Chinese sericulture; they feed almost exclusively on Morus alba, which as mentioned grows quite vigorously on Chinese farms. Eastern North America has a native variety of mulberry, Morus rubra, an understory plant suited to the area’s deep forests, but the silkworms rejected M. rubra feed.
Instead, colonists planted several Chinese mulberry varieties in hopes of keeping their silkworms happy. Colonial-era botanist William Bartram, in his travels through the South, noted dozens of instances of M. rubra but only one of M. alba trees — at a plantation near Beaufort, S.C. that was attempting sericulture (digitized book, pg. 308; location surmised between present-day Jacksonboro, S.C. and Savannah, Ga.). Later, Connecticut implemented various subsidy schemes, even including a cash bounty on planting Chinese mulberry varieties, and eventually succeeded at building a small silk industry in the 19th century.** (The Morus multicaulis mentioned in the Mansfield article is now recognized as a variety of M. alba.)
In the intervening centuries, the invasive M. alba has far outcompeted native M. rubra on its home turf: M. alba has spread much of the contiguous United States except for the desert Southwest, high plains, and taiga forest, and pushed M. rubra to endangerment in Connecticut, Massachusetts, and Ontario. Not only have widespread planting efforts like those in Connecticut spread M. alba far and wide, but it’s a tree that’s been honed by centuries of breeding for vigor, with a “high growth rate and great adaptability to adverse environments,” according to the Global Invasive Species Database: “M. alba and hybrids were evaluated to be consistently more fit than the native M. rubra in a laboratory study.” M. alba hybridizes with, and spreads root diseases, to M. rubra. Widespread deforestation and urbanization in eastern North America opened up countless opportunities for sun-loving, early-successional species like M. alba, while concomitantly destroying the deep shade that M. rubra adapted to.
* As a descendant of Cantonese merchants, perhaps I should be glad that these experiments failed? Oh, the complicated webs that history weaves for us!
** The mild success found in Connecticut indicates that perhaps it was less the climate, but Virginia’s lack of capital for indoor silkworm warms, that doomed the early industry.
This semester, I’m taking a Natural Resources class through Virginia Tech about understanding local watersheds, wherein I’ll be researching and posting knowledge about the Washington Channel. You can explore the other watersheds that my classmates are investigating over at the class blog’s page. Other posts in this series can be found using the tag watershed.